Balsa USA 1/4 Scale Cub – Part 5 Finally back on the bench!

The cub has been sitting quietly in the corner of my shop for two and a half years now while other projects came and went including dozens of repairs/builds and modifications to my planes as well as many visitors projects.  It even survived the move that is nearly 2 years in the past now with no damage… so finally it has found its way back to center stage on my bench. 

If you want to catch up on the old posts, here are links to each:

Balsa USA 1/4 Scale Cub – Part 4 More Mods – Rudder Shape.
Balsa USA 1/4 Scale Cub – Part 3 More Mods – Flaps!!
Balsa USA 1/4 Scale Cub – Part 2 Modifications begin
Balsa USA 1/4 Scale Cub – Part 1 Acquisition and plans

Mostly getting back to this project came about because my flying buddy, Garry Bow, bought a Dave Partrick 1/4 scale Super Cub at the swap meet in Toledo this last spring and though he sold it before getting it in the air again, we have been talking about it enough that other folks in the club have decided to enter or re-enter the brotherhood of RC cub fliers.  I think almost every RC airplane enthusiast has already, or plans on getting, one variation or the other of the J-3, clipped wing, PA-18 super or maybe even one of the more modern variants like the Carbon Cub.  Cubs lend themselves to slow majestic flying and there are many different variations that allow for you to fly a cub that is at least semi-aerobatic, can tow gliders, carry a drop box, sky diver, camera or whatever.  Most Cubs are almost instantly recognizable to even those who don’t pay much attention to aircraft or RC and also make great entry points for scale building.  Cubs can be very simple 4 (or even 3) channel setups with a high wing and light wing loading.  This allows for slow and gentle landings and the typical Cub landing gear configuration can absorb some punishment in case of abrupt landings,  especially those outfitted with bush tires and working shock absorbers.   So it is time to get back to my latest endeavour into the the world of Cubs. 

My latest cub started life as a Balsa USA 1/4 scale J-3 Cub kit but I have been working to make it into something closer to a Super Cub.  I’ve detailed a lot of my modifications up to this point so I’ll try to just continue where I left off a couple years ago!

Looking back I realize that I did make one more significant change that never got posted and that has to do with the wing attachment method.  I really disliked the way the wing attached.  It seemed like it would take 3 people to get the wings on and off without damage to the airplane with just a location pin and bolts holding on those massive long wings.  I didn’t like the thought that damage to the root rib seemed likely if you didn’t get the struts on quickly before a gust of wind or careless bump to the wing caused an issue.  This design was made for someone who is much better organized and meticulous than I!

So right before I packed it away, I added a small wing tube arrangement to my Cub.  At first, I tried to put a straight wing tube and sleeve in place but then realized that a straight tube was not going to work well in a wing with dihedral!  So I assembled and shimmed and adjusted until the wings were sitting at the proper angles and then created a wing tube for each side utilizing the servo wire guide holes as a ready-made mounting point for the sleeves.  The tube itself is a carbon fiber tube from a friends wrecked airplane and the sleeve is an aluminum tube that the CF rod fits perfectly inside of.  I butted the tubes up in the center of the body and created a couple of new rib structures (complete with cutouts to make installing the mounting bolts easier) to hold them in place.  Now all I have to do is slide the tube into the wing and slide the whole assembly into the body and the wings have enough support for me to take my time bolting them in and attaching the struts.  Time will tell if this system works the way I hope it will.

Since I retrieved the Cub from its dark corner, I have started working on a couple of other changes too, including a new tail gear, engine mounting, and a glider tow release.  I’m still debating lighting options, float mounting (I have no appropriate floats yet), a possible belly pod (to mimic a baggage pod or fuel pod, both of which are in use on many Super Cubs) for candy drop or whatever, and possibly some hard points to carry a very non-scale sky diver drop mechanism I have.

Also, I have started to plod forward with the final steps the previous builder never completed like window installation, wing leading edge shaping, etc…  I’ll try to post on some of these activities soon.

Balsa USA Bristol M-1 Part 1: Motor mounting

A while back, my flying buddy Gary gave me a Balsa USA M-1 Bristol as a thank you for some work I had done on an airplane of his… or maybe it was a few airplanes… or a bunch!  Anyway, we had both seen it at a swap meet and I had admired it but he bought it.  I think it may have been traded off and then reacquired at some point before it found its way to me but in any case it has been sitting in a corner of the shop for a while now and I finally picked up what I think will be an appropriate power system for it, the E Flite Power 46 and a Castle Creations Talon 90 Speed Controller.  The Talon is a bit of overkill but for some reason seems to always be available at a relatively lower price point in the Castle line (my favorites).  It has an outstanding BEC capability and can handle up to 6S and 90A.  Castle and E Flite are among my favorite brands.   The first task was to build up a good engine mount for an airplane that was kit built to mount a glow engine.  To mount the motor out far enough to get the back plate beyond the cowl face means spacing out somewhere around 3″ to the back of the motor in this case.  Nose weight is also not a consideration since the Bristol is so short nosed and more likely would need more weight up front if anything.  Finding some 3″ spacers is difficult at best, and I like the idea of something more rigid anyway (long spacers tend to flex or twist a bit under load). To accomplish this I decided on using some shorter spacers mounting to what I refer to as a sub-firewall and then more short spacers to the X mount on the back of the motor.  This assembly is very strong and uses a few easier to find smaller spacers and some rigid plywood to put the motor out where it is needed.  Here are some pics showing the assembly.  
Motor attached to sub firewall
Sub firewall bolted to firewall
Mounting plate tie wrapped to spacers used to mount speed controller.
With the cowl in place
There are a few other necessary installation tasks… servos to be mounted, an arming switch to mount, and making sure the battery can be located in a spot where the plane will balance… but progress is being made.  Looking forward to flying.

P-47 Bonnie reassembly and lessons learned.

My local hobby shop, Hobby RC, got my replacement body and decal set in quickly and so the process of making this craft flight worthy again could begin!

Immediately upon unpacking a couple of things became obvious.  As you can see here:

The decal set I ordered would not be necessary.  Unfortunately the picture on the web site showed the spare part without the graphics.  I’m happy this is the case but could have saved $15 if I’d known.

Next I noticed the rudder was not attached and I had no idea to this point how it was attached… the original came on my plane… I’m pretty sure…

Turns out the rudder just clips onto the body by the use of built in plastic clips and pins built into the two parts.  You simply push it on and it pops in place…  Couldn’t be much simpler.

After screwing on the two halves the elevator with the 4 black screws.

I pushed the rudder on and started flexing it back and forth when I noticed that it didn’t allow for much throw (I had been thinking it needed a bit more) plus I noticed that it tended to flex the elevator joiner, resulting in some deflection…  that had to change.  So taking advantage of that easy removal, I popped it back off and opened up the pass through slot with a sanding drum on my electric rotary tool.  You can see how tight it is here in the before photo:

Quite a bit of material needs to be removed to get a significant amount of throw AND keep the pressure off the elevator joiner.  Here’s the old and new with the modification.

And here is what it looks like installed.

 This allows for the maximum throw allowed by the factory servo and linkage setup without binding.  Sliding the push rods back in place and installing the servos on the rails was pretty straight forward.  I notice the servos have no rubber grommets on the tabs… though I suppose in a foam body electric, vibration problems are fairly limited so no need.

While I was working on the tail, I flipped the plane over and went to work reinstalling the retractable tail gear.  Only something was missing!

The plastic insert that everything mounts into was not in the new body… time for some surgery on the old body again…  You can see here that it takes a lot of carving to get this thing out.

And here is the piece that comes out.  It takes a little cleanup from here.  You need to get all the foam off of it to easily insert it into the new body.

After getting the plastic insert into the new body, mounting the servo followed by the retract itself was pretty straight forward.

Mounting the servo and retract outside the aircraft is more straight forward than it was taking it out while still inside the tail of the plane.  Route the wires (easier if you have “grabber” like the one you see here) and with a little glue on the contact points with the foam just slide the assembly back in place and we are back in business.  

Reattach the doors and springs (a little bending/adjustment is likely needed) and everything goes back together fairly easily.

Next I reinstalled servos and the control board with it’s associated plywood tray inside the fuselage as well as the connector boards in the wing root.  You’ll want to check your notes or photos on which wires plug into what as the labeling is helpful but not completely obvious.  Once again I ran into a small issue where my notes and pictures were insufficient.

Here is the starboard wing root 

Note the one socket is closest to the trailing edge of the wing.  As you reinstall the matching plate in the body, be conscious of this and note that the port side is opposite…  I just “assumed” that both would be installed similarly and it turns out not to be so.

Most everything else went back in with no issues, though I encourage you to take copious notes and photos if you have to do this for yourself.  It will help immensely to guide you in the rebuild, knowing which screws to use, etc…

As I was assembling for final adjustment of the servo linkages and testing I found one more casualty.  Here are two of the wing screws…

As you can see there was a bit of force exerted when one of the wing tips found the ground.  These bolts are a little bit soft (which worked in my favor in this case!) so I was able to simply use some padding around the bolt in order not to mar the threads and bend it back into shape with pliers.

I made a final “rebuild” step by peeling the custom graphic for my crew chief (my Grandfather) and successfully reapplied it to the the new fuselage.  Welcome home Grandpa! 

While the P-47 was in the shop, a few additions were also made.  With the addition of a telemetry module and associated sensors (GPS, G Force and Voltage sense wire…) I’ll be able to keep a better eye on my battery pack voltage, ground speed and other interesting tidbits.

This last weekend we had a nice event at the club field during which I got in 6 or 7 flights.  After a bit of elevator trim during the first flight, the Bonnie proved she was back in peak form.  Her pilot took another flight or two to get back in the groove…  I did make sure that the battery was securely attached to the battery tray before each flight and I may add additional measures to be sure the whole assemble does not leave the plane prematurely.  For now just being sure the straps on the tray also engage the hook and loop material on the battery seems to be working.

P-47 Bonnie – battle damage

The FMS 1500mm P-47 continues to be my favorite flying War bird that I’ve ever flown.  Because this is true, it has gotten quite a few flights in the past few months.  But now there’s going to have to be some repairs before any more flights occur.

The P-47 flies so well that I tend to push it a bit from time to time and such was the case the other day as I lazily cruised around inverted and enjoyed the inherent stability of the air frame.  When I needed to get back upright I pushed a bit of extra power and pushed a moderately tight outside 1/2 loop…  Unfortunately at that point the battery decided to exit the airplane, in the process pushing off the canopy and of course disconnecting itself from the rest of the aircraft in the process!  Yikes!

After that there was much confusion.  The airplane rolled to upright (which I was trying to do) and stalled nose down at about 250 feet.  At first I thought I had occasional and/or partial control so I continued to do what I tell everyone else to do… “Keep flying the biggest piece!”  The airplane porpoised quite a bit and every time the nose came up I jammed in some down and it righted itself (yes, I know I was merely spectating at the time but I kept trying!).  This continued and the airplane also turned back toward the runway as I intended and actually ended up landing only 10 feet or so off the mowed part of our runway near “show center”.  Unfortunately the last porpoise up and stall was from about 10 feet and it hit moderately hard on the lower part of the cowl.

I can’t be absolutely certain, but my best guess is the battery slipped from the hook and loop straps, leaving the tray in the plane while the battery pushed the hatch off and bailed out!  The tray was laying next to it in the grass. I believe ejected on impact.

 What follows is a photo catalog of the damage incurred and the various disassembly I have done since in preparation for the replacement of the main body.  The impact (I maintain the rule that you can’t call it a landing if you should say impact…) made a couple cracks in the cowl and compressed some foam on the bottom of the nose, as well as splitting and cracking the first 12″ of so along the bottom seam of where the two foam “halves” come together.  The motor box is also a bit more loose now than it used to be.

It is certainly something that could be repaired with just some glue but it would be a bit ugly and I don’t want to go to the effort of a full repaint of the body, which is what it would take to make it look good again.  A new body is available and at ~$85 not out of reason.  As my buddy Kelly says:  “Let me know when this hobby gets cheap.”  I will do quite a bit to avoid painting as I have no talent for it, nor proper equipment or appropriate paint area to do it right.  Disassembly and re-installation is in my wheelhouse however!  So to start, here are some pics of the damage.

Here are the cracks in the plastic cowl piece.  Looks fairly fixable since there isn’t any compression… glue, clamp and go I’m hoping.

This shows the side of the cowl.  As you can tell, as the cowl pushed back at the bottom, the top pulled down and forward which ripped some of the mounting points loose.

This is the bottom of the nose where you can see the split seam and cracks and compression radiating out from the impact zone.

You can really see the compression and re-expansion here.

As you see here, lots of compression further back as well.

Back edge of the canopy… more compression?  Or maybe from impact when it touched down.

Time to start disassembly.

Remove this cover to get to the tail wheel steering servo…

Steering servo to the right, retract left… screws holding retracts already removed.

Remove the springs from the landing gear doors before removing the doors.

If you flex the doors, the pins can be popped out of the loops without damage to either.

Removal of the Horizontal stabs is a simple matter of removing 4 screws.

 Remove these two screws in the rudder to remove the rudder horn.  Pictures on line seem to indicate this part may come with the new body but just in case…

Here’s the distribution board that drives all the in-wing electronics.  The two white connectors feed the wing root connectors.   Port side connector feeds to Starboard wing and visa-versa.  4 screws hold it to the mounting plate.

Here are the servo wire connections to the mixer board for reference.

The distribution board screws through these three layers of plywood.  Notch out portions to the rear.  The lowest one is glued but can be pried up with some effort.

This is the magnet that holds the rear of the canopy on (except when a 2lb battery slides out with the help of a couple/few G’s of force and pushes it off!).

While you are there remove the servos and the linkages by unscrewing the clevises at the elevator and rudder and pulling them out from the servo end.

This is the wing root connector.  Held in with 4 small screws.  Wires fish through without to much effort… re-fishing them through looks easy enough.

Aside from that, removal of the motor and speed controller is pretty straight forward.  The speed controller is very easy to remove if you fail to properly secure the battery and do some negative G maneuvers!!!  (To soon?)

Reassembly to come… I hope!

Update to my Dumas Windy air boat is underway… kicking the glow habit.

A couple weeks ago, my only glow powered airplane lost its battle with gravity.  “The Pig” as we called it had seen better days and we think the wing (which had a couple of weak spots) may have just made one to many 8G turns…  It dove hard into the ground and shattered the forward third of the body.  The wing was in 3 pieces as well so not much left to work with.  Nor was I particularly interested in spending a lot of time and money on a truly major rebuild anyway.  There are lots of old beaters around to chase gliders with (it’s main occupation the last several years).  RIP “Pig”. 

Whatever the cause, it meant that I had only one glow powered craft left… my Dumas Windy air boat.  That meant I was now in striking distance of finally getting completely out of the glow business.  No more messy oil coating every surface, eating finishes, staining shoes, etc… etc…  No more obsessively tweaking the needle for that little extra kick.  No more disappointment when the glow driver battery was dead.  No more little slices on my fingers from flipping those insanely sharp composite props.  I can do it!  I can be free!!  Maybe I could even find some poor soul who hasn’t yet tried to kick the habit to unload the remnants of my stash?  Someone who is still completely in the grasp of that cruelest of mistresses…

Glow motor addiction! 

Yep, I recall when I was hooked.  The smell of warm castor and the ear piecing shriek of a 2 stroke at 15,000+ rpm was what I craved.  When I tried to escape I was simply lured in deeper by the mellow tone of a 4 stroke purring away at an idle so low you can practically count the RPMs.  And the price just kept getting higher.  10/15 wasn’t good enough anymore, now I needed 20/20 or better.  The “dealers” kept pushing harder with gold plated (literally) and chromed editions that I simply had to have.

But I’m almost free now.  If I can find a replacement power system for the LA-15 (blue edition of course… I could never stand the cheap stuff…) I could be free.

I quickly realized I already had a possible alternative.  I had recently purchased the remnants of a E-Flite Timber.  The electronics and power system were all intact to all appearances.  So the plan was hatched.  I would transplant the BL10 from the old Timber onto the Windy.

First I stripped the LA-15 from the boat and placed it into my swap meet box.  I only took a quick sniff from the muffler as I polished it up a bit for display… (Don’t judge if you haven’t been there).  Twice it occurred to me how reliable the 15 had been and how well it would pull the half finished little mustang that lay just across the shop but I summoned up my will and closed the lid on the swap meet box firmly.

Once past this job I quickly stripped the on board battery, throttle servo and fuel tank.  After gathering a few supplies at the hardware store I managed to space out the BL10 motor with some nylon spacers, threaded rod (hacked to length) a few washers and some nylon insert nuts.  The firewall looked like it was about ready to give up the fight:

Some medium CA and kicker was employed to solve that issue.

I kept the little 7×4 3 blade prop.  At least for now.  There just isn’t clearance to go to a higher diameter prop and  I haven’t found much else that looks like a good fit, so for now this is it.

A bit of temporary Velcro strapping to temporarily hold the speed controller in place and thing were looking pretty good.

Time for a quick test.  Using a 3S 2700 I measured about 11A and 130W of power draw from the battery.  A quick test on grass confirmed that this is just not the same level of power as the old 15.  I tamped down the temptation to re-install it (I get stronger ever day but the temptation never seems to die!) and did a bit of research .

A couple days later I recalled that some Timber owners had run this motor and speed controller on 4S packs… and with very little difference in prop size they had reported continued health of the power system.  So I decided why not.  This time with a 4S installed the meter showed 270W and 18A of draw!!  I was running this test on carpet and the boat took off across the room when I released it and without even reaching full throttle.  This combination looks good.  This alternative to glow for this boat seems great, no side effects apparent… I might make just make it!

During a final test… just for fun.  I noticed a brief stutter on startup and then again at a higher throttle… I thought the motor was going to shake apart.. what the heck??  Oh well, I guess there are always slips along the way…  Guess I better start researching this new issue…

First ever ducted fan electric for me… Alfa F-16C

The RC community is a great resource with worldwide reach and it is fantastic what you can learn and the support you can get just for the asking.  It has always been my hope that something I write here will help out someone else… beyond just entertaining.  Sort of my way of passing it on.  In this case though I got some excellent help from a member of the community who I found on another web site.

Thanks to a posting on the RCGroups web site and a quick response from a gentleman over in England, I now know that what I have here is an Alfa Models F-16C.  Alfa Models appears to be based over in the Czech Republic and available only directly from them at this point.

Someone wanted this one bad enough to order and pay some substantial shipping or perhaps a US vendor carried them for some time??  In any case I now have access to the instructions so I have information on the power systems that are recommended, though I can’t tell whether this one has one of the “stock” options or something else, plus some idea of what size battery to run, where it should be balanced etc…

As I move forward on the build and fly, I will post more here.

First ever ducted fan electric for me… whatever it is!

An F-16 finds it way to my hangar

Went to a swap meet on Sunday and along with a few little odds and ends I ended up with this:

I’ve searched on line and can find no mention or image of this little foamy.  I’ve been wanting to try my hand with something a bit faster… If for no other reason than I’ve never flown anything with much speed and my assumption is this will likely fit the bill.  Also, I’ve never flown a ducted fan either so maybe get a couple of firsts in one!

At first glance I thought this would be a pretty plug and play, throw it in the air and go option… but after getting the plane home I’ve found a bit more of a project.

First, I was trying to get the speed controller out where I could get a good look.  Since I can’t find any info on the airplane or it’s power train, I have no way to know what battery it should use, what current it will pull, etc…  I was hoping the speed controller would give me some idea what kind of “not to exceed” numbers to look at.  Here is where the speed controller is buried.

Yep, that’s it way up there in an almost invisible location… sigh.  After pulling one nylon screw to pull out the “scoop” I was able to remove the controller, motor and inadvertently the thrust tube that guides the air stream smoothly  out the tail.   Here’s the speed controller with nary a part number, label or any other identifying mark in sight!

That being no help I looked over the motor and ducted fan unit hoping for some help but as you can see it was not much more illuminating.

I eventually took out the guide tube as well…

…and cleaned up all the parts, scraping off excess glue in some areas, re-gluing others etc…  In the process I found some suspect wiring that I intend to replace and clean up, extending some wiring a bit so that the speed controller is bit more accessible!

Here’s the wiring that needs some work.

Here you can see the access points I had to open up to get the thrust tube back in place.  You can also see the one issue I had known about… the aileron control horns seem to be missing!

 

After all that I decided to do a test run just based on size and best guesses so I tossed a 3S on the speed controller, pulled the power pin from the ESC to the servo tester and laid it out on the table top…

The initial run was promising with ear splitting, vacuum cleaner on crack sounding rpms.   That IS what an electric ducted fan is supposed to sound like, right?

After I rework that wiring a bit, next on the hit parade is to put my meter in line and measure current draw at full throttle as another data point toward picking the right battery.  Then I can get back to reassembly and installing some replacement control surface horns.

Then maybe estimating some sort of balance point/CG and installing a receiver and radio setup… This thing is practically bind and fly, right?

Tugster Tug Boat kit by ZippKits.com

During our sojourn to Toledo, Ohio for the annual weak signals show many of us picked up some new toys.  One of the items that found its way home with us was the ZippKits “Tugster” tug boat kit, purchased by my friend Steve.  He had the idea of building up the Tugster for use in aircraft retrieval.

Now, about 6 months later, the little tug boat has been assembled and prettied up for its big debut.  I think Steve put it all together in just the last couple weeks.  Here is the big launch.

From Steve’s description, the little tug went together quickly and fairly easily. And it appears to have good power!

Steve also reported that the Hardware Kit was quite complete and had pretty much everything needed minus the radio system (receiver and transmitter needed).

Here is a side by side with my Timber out on her floats for the first time.

The little boat seems to have quite a bit of power.  Certainly it easily shoved the Timber around!  The supplied batteries (2 x 6V 4.5AH batteries) needed only 450mah to recharge to full after out poking around at the pond for the better part of an hour the other night so it is hard to imagine recharge being needed during a day at the lake.

The Tugster may see some action here in a couple days as we have our club float fly this weekend.  We’ll see how she does as a real work boat.

Extreme Flight 74″ Laser – Build nearly complete

The Extrem Flight Laser has been in the shop now for about a month and I’m finally getting close to flying status!  My final items to complete are to get the speed controller and receiver installed, do the radio setup and then go back through and do final checks on bolt tightening, gluing any joints that need it and seal all the hinge gaps.

Overall, the instructions and included hardware seem to be good quality and short of flying it, I am pretty happy with it so far.  I’m going to get a bit nit picky over the next couple of paragraphs in hopes that this will help anyone else who is working on putting together.  There are a few shortcomings in the instructions worth noting and a couple tips I can pass on as far as what to do (or not) that may prove useful.   So here is my summary of the good, the bad and the ugly of building this ARF.

First off, when installing the control horns you need to remove some covering in order to get a good glue bond.  The instructions for this are pretty good but I would recommend a couple of ways to make this easier.  First, when drawing around the control horn base in order to know where to cut, I suggest a white board marker.  They are easier to wipe off with just some alcohol or window cleaner.  Also when removing the covering I remove only to just inside the line so that the base plate actually slightly covers the edge of the material.  This helps ensure that the material will never peal up around the horn and the result looks very professional.  Secondly, not only here but pretty much anywhere you need to remove covering… I highly recommend use of a soldering iron.  With minimal practice you can move at a rate that doesn’t char the wood underneath but just melts the covering.  It also seals down the edge as you go.  I find this method far superior to use of a razor blade or Xacto knife.  Extreme Flight’s manual mentions this option in one place but then often says to use a blade in many others.  I’d stick with the Soldering iron in pretty much all cases.

While on the subject of control horns, for some reason I got two sets of of rudder horns with no explanation as to why or what I might want them for… still don’t know.  In any case, I would install these dry and mark them once you measure for proper centering.  The “barb” on one side that I thought would end up against one side of the rudder to aid in alignment… does not seem to be any such thing and I don’t know why it is even there…  Just be cautious that you get the centering correct here.

One preference/ nitpick of mine is the tail gear mounting method.  I’m used to having blind nuts embedded but this gear mounts only with wood screws.  I would love to have the blind nuts as I think they result in a stronger mount.  Hopefully this mounting method will be strong enough.

The next note I made while building was regarding the rudder pull-pull mechanism.  First, if you have never put one of these together before you should go find a step by step instruction set that will walk you through everything you need to know ’cause what is in the manual for the Laser is not that!  If you’ve done a couple you probably will have no issue with this one.  One odd note is that they specify to crimp the aluminum tube with side cutters???  If your side cutters are worth a darn and you squeeze firmly you will end up cutting that tube and probably the cables themselves clean through.  A standard pair of pliers works quite well, thank you.  Don’t use side cutters!

Next, I noted that the instructions for installing the wheel pants had a couple of shortcomings.  First, when they have you drill a hole, they do not tell you what size hole… you can figure it out of course but it would be nice if they just told you… sorry I didn’t write it down or I would have provided that here (silly me).  Also when they have you install the blind nuts it required an excessive amount of force to get the little sharp prongs to push into the wood because the back of the wood inside the wheel pant has a fairly heavy coating of fiberglass/resin which necessitated a pair of channel locks to get the prongs to penetrate!  I felt like I was risking a good amount of damage when I did this but that is what it took to get them to embed flat…  and you need it to lay flat to keep it from rubbing against the rim/tire.

One error I ran into as I mounted the motor is the stated distance from the front face of the motor box to drive washer should be 6-3/8″… My ruler says it is actually 5-3/8″!  If you extend it to 6-3/8″ the cowl will not go back far enough to mount.  Luckily, I checked before I got things mounted.

OK, that’s about it.  Everything else seemed straight forward to me and I appreciated the packaging of the parts (individual bags with labels for each set of pieces).

I’m looking forward to getting started flying soon and the real test will be flying characteristics and how well she holds up over time.  Looking forward to messing with setups, props, batteries and telemetry to see what works best.

My Shop… Truth Revealed!

So by way of a confession of sorts…

I consider myself a moderately skilled assembler and occasional builder of RC airplanes.  I know a couple guys who are true craftsmen.  Guys who build scale aircraft that the Smithsonian would be proud to display… I’m NOT that guy.  However, I strive to build a safe to fly, low maintenance flying machine and for the most part the results seem to have few “avoidable” issues.  I enjoy working on my aircraft in the shop (usually) and when we moved a few months back, one of the primary considerations was shop space available OR a lower price space to build an appropriate shop if none was part of the package.  This eliminated a bunch of homes that just didn’t have anything appropriate.  The final purchase was a bit of a compromise (what isn’t) but I am now working in approximately 350sq feet of 2nd floor/converted attic space inside the house.

I had to forego most of the power tools and carrying larger craft up and down the stairs can be a challenge but not having to go outside to reach the shop is pleasant and walking the stairs is good exercise, right!  In the center of this space is my 12′ conference table re-purposed for RC work.

At this point, most folks proudly post their picture of the shop with beautifully laid out peg boards, immaculate clean tools, perfect lighting and a completely clean benchtop…  well, honestly mine usually looks like this:

You can see the tail of the 50cc powered P-51 (it needs some engine mount tightening and is a recent donor of a receiver to the Extreme Flight 74″ Laser project which is currently underway).  Most of the rest is part of the Laser project or some random stuff I needed or used in the last week or two on other projects that have come and gone.

See, I am of the opinion that a clean workbench is one in need of a project… or five and any open space is good place to start another one!

Realistically I came up to the shop the other night and saw this and snapped the pic… It really is pretty representative of day to day life in my shop.  I immediately started to picking up and putting away some of the tools etc…  My usual breaking point is typically when I come to the shop and realize that I have some of my more recent projects literally piled on top of earlier projects.  At that point I know I need to clean up a bit and will put away a majority of the tools, do a little cleaning where needed and get at least some open tabletop space cleared so I can start a new project!  I don’t really try to have all the space cleaned up at any one time.  It’s more of a rotation system.

 I rarely work on only one project from start to finish without interrupting that project to work on several others.  When one gets close to completion I usually get enthused and buckle down and finish it up depending on my enthusiasm level for it by that point.  Besides, several of my flying buddies are frequent visitors to the shop, typically with their latest RC airplane that needs some TLC and those “quick fixes” will of necessity preempt whatever longer term project I have going.

So there you have it.  This is my reality.  Ain’t it great!?