1.2M P47… The latest addition

E-Flite has been updating a number of their existing warbirds in this size class to include the latest round of upgraded electronics, including 3 and 4S capable power systems, upgraded digital servos and often a livery change and/or some tweeks in response to past user feedback.

It was inevitable that they would eventually get around to one that I could not resist and of course the the P47 is the one for me.  I consider it the ultimate WWII aircraft.  Showcasing all that allowed America to come out on top in that epic struggle, it was powerful, fast, tough and reliable, heavily armed and armored and we made a bunch of them!  (15,000+ I believe)  Many were assisted down the assembly line by my Grandfather in Evansville, Indiana!  How can I not love the Thunderbolt?

P-47 Razorback 1.2m BNF Basic with AS3X & SAFE Select

So, as soon as they started rolling out the newest version, I put one on order with my local hobby store.

After about 10 flights with mine.  Here is my list of what I really like and dislike about the new bird.

Good:

The new electronics are great.

Upgrading to a 4 cell power setup gives the bird the power it needs to perform like a warbird

The new SMART ESC and AS3X receiver allows for plenty of data to keep an eye on battery usage, temperature, etc… to insure she continues to fly well. 

The servo upgrades seem to work with precision and the plane just overall flys nicely as a result.

Weight.

The plane is actually pretty light, especially considering the available power, even when you load all the armarments on board.  It keeps the airplane relatively light on the wing which results in easier takeoffs and landings.

Livery.

I’m sure there are some who were hoping for somethin different but the Kansas Tornado is a reasonably easy to see and, at least to my eye, attractive scheme.

Prop.

It seems to be almost imposssible to fit a large enough 4 blade prop on a model P47 to look really scale but at least we got a 4 blade with a somewhat appropriate shape!

Bad:

Retracts.

I do not understand why E-Flite wouldn’t have put a few dollars into the retracts to give them working Oleo struts.  As light as the bird is, they would not have had to take much abuse but it sure would be nice to have something to take a little of the shock in the case of a poor landing.

Tires.

Combine the lack of functional struts with these rock hard tires and you have zero shock absorption in the landing gear.  Are decent foam tires with “any” give whatsoever so hard to source?  Add to that the pressed in diamond pattern on the tread which looks just silly…  OK, maybe I’m being overly dramatic, but it seems so easy to have done it right!

Prop.

While I like the general idea of a 4 blade and I get that properly sizing one for scale looks is difficult, I don’t trust any airplane where they claim you can run 3 or 4 cells without a prop change.  I mess with prop changes frequently on my aircraft to get the performance I want so I’m very aware that adding 33% more input voltage to the same prop means you have made huge sacrifices somewhere.  Likely its just a compromise that is mediocre for either.  It would have been nice to get 2 props with the aircraft… each actually matched to a 3S or 4S setup.  My observation so far is the prop is probably overloading the 4S setup a touch and pulling more current than it needs to and likely underloading the 3S setup and therefore not getting as much power out of the system as would be possible with a correctly sized unit.

Fuel Tank.

I like the removable rockets and bombs, but why is the centerline fuel tank fixed?  I took care of that issue, but my solution is a bit more permanent… involving some side cuts.  The plane flys even better without any of the extra drag and that is how I fly it most often.

Overall I am enjoying the P-47 very much and I am already keeping an eye out for some replacement struts and/or tires… even if I have to turn to my 3D printer to solve the latter.  She flys very nicely and with the AS3X in the background, is especially stable even with some adverse meteorological conditions.

I have been flying more and more on my 4S 2800 LiHV packs and with proper throttle management, nice 6 minute flights are the norm.  I’m just getting comfortable enough to be working on nice scale takeoff and landings as well as experimenting with making the manuevers more scale like as well.  She can certainly fly like a sport plane if desired so making scale manuevers is something you have to be intentional about.

As I get more flights on it and make any modifications, I’ll be back to report but overall I expect this bird will remain in my fleet for some time to come.

New Freewing JAS-39 Gripen… Good, but not my cup of tea.

I recently aquired a Freewing JAS-39 Gripen. 

Up until recently, I have never been particularly interested in flying EDF aircraft but with the latest updates in battery technology allowing for more and more energy per ounce of battery and the shift toward more and more of these type of aircraft being available in ARF or RTF foam bodied airplanes I have begun to consider having one or two in the fleet.  I did some research into available A10s and didn’t find one that really met my personal requirements.  Same for a couple other models.  In the end it came down to an impulse buy from another club member at a nearby swap meet.  He had an airplane that had always interested me and it was essentially new and at a good price.  Not least of all, there is going to be an EDF only event at the field this summer so I wanted to have something nice for the event!

As with most warbirds that I purchase, I did some research on both the real airplane and the model.  First, about the real airplane.

The Gripen is a swedish multi-role fighter that is largely considered to be one of the top two most capable fighters in the world (the late model F-16 is the other and they stack up very well against each other) if you exclude stealth aircraft.  By most accounts it is one of the best gen 4 jets ever built and it continues to be upgraded.  Its distinctive canard design and power to weight ratio make it a very capable dog fighter and the advanced electronics packages and flexibility of weapons payloads make it an extremely dangerous opponent in BVM (Beyond Visual Range) combat.  The F16 is also a very nimble and highly powered platform with similar capabilities… it just gets there by having more thrust to offset its heavier and larger chassis.

As far as the model goes, research says this airplane has a lot of capability depending on how you set it up and fly it.  There seem to be three common complaints from those who own the airplane.

  1.  It is rather large as compared to other aircraft running a similar power system which leads to complaints that this results in it being a bit heavy for this system and therefore not as high a thrust to weight ratio as some would like.
  2. Using the recommended battery size and capacity results in an aircraft that is nose heavy compared to the recommended, which results in an inability to perform certain manuevers.  A select few who seem to be well respected say even the recommended balance point leaves the plane significantly nose heavy.
  3. Using the recommended battery also results in short flight times… perhaps even compared to most EDFs which are somewhat notorious for short flight times to start with.

I’m not as concerned about the first issue as I haven’t done much EDF flying and am not all that fond of high speed so while I wouldn’t mind to have some extra punch available to me, I’m not looking for a lot more speed than is necessary to make the airplane fly well… and it seems to be capable enough by that measure.

Items 2 and 3 are somewhat of a concern and are of course intertwined.  In most electric aircraft, you have the option to add a bit of battery capacity if want to extend flight time, but with this airplane, adding a larger capacity and therefore heavier battery will just exacerbate the nose heavy condition as the battery is in front of the balance point and can not practically be moved rearward to compensate.  I don’t like extremely short flight times and I would like to explore some high alpha flight which requires a proper balance point to perform.  In addition, since the airplane is already a bit on the heavy end of things, I don’t really want to add dead weight to the tail to force the balance rearward.  There was no apparent solution…  Welcome to the world of EDFs and aircraft design I guess… Everything is a compromise.

Further research along with some fortuitous timing led me to what I hoped would be some improvements.  I won’t go into a lot of long winded discussion… maybe another post… but the answer seemed to be to use a battery that housed a bit more energy with minimal weight penalty.  The best thing available looked to be the SMC LiHv packs so I ordered a couple 6S 5300s.  They are no heavier than many other 4500-5000mah packs and pack a bit more punch than standard LiPos due to the HV cells.  Best I can tell, they are the bomb!

I flew the Gripen for just 2 flights.  It took off beautifully from our Geotex runway and tracked nicely in the air as long as you kept a good amount of power on it.  You could slow down pretty well and the plane would continue to fly but it starts doing a bit of rocking which indicates you are approaching stall.  That is a good thing compared to many jets who (as I understand it) just drop a wingtip and stall with less warning.  Credit to the aerodynamics of that big delta wing I suppose.  Visibility leaves a lot to be desired between the gray and the arrowhead body shape, there isn’t much to keep me oriented aside from keeping it close.  I added some extra markings between flights 1 and 2 which helped but to get much better I’d really have to do some thing drastic.

And then I had to land it.  I probably carried more speed than I had to but again the big delta wing makes itself known during the flare as you can really get into a fairly nose high attitude as you land which results in smooth landings with little load on the gear.  Both flights the landings were really pretty.

I didn’t really get a chance to do much trimming or playing with rates and mixes as the flights were by necessity short as the power system is typical from what I understand… which is to say inefficient and power hungry!  The good news is it apparently needed little to no trim so I didn’t need much trim time!  By the time I got a bit comfortable with it I was on approach.

I flew the first time for 3.5 minutes before landing with a decent battery margin and the second time with a bit more crosswind and holding a bit more speed during the flight for only 3 minutes.  The first time I had a decent margin of capacity left but not a ton and the second it was a bit lower than where I normally like to land.  This is just far to short for me.  I couldn’t get the plane up and comfortable with enough time to actually explore much of the flight envelope and I also didn’t like how fast it has to fly in order to fly well.  That also left me no time to try out different mixes, play with high alpha manuevers etc…

Maybe I could adjust to it eventually… but I don’t think I’d ever be really happy with flying it.  Having a fast flight regime is great, but I also want to be able to fly slow and gentle.  I have planes that can do both but I don’t this is ever going to get there.  I’m also concerned that if I try to push it to do what I want it to do I’ll find the hard edge of control one to many times and crash the plane.  There are just to many other planes I would rather fly and/or want to own to hold on to this one.  This one flys to much like its scale counterpart… fast, powerful and heavy.  I don’t think EDF fighters are for me.  For those who like these type of airplanes, I suspect there will be some folks who will love it.  Just not me.

Maybe an A10 or L39 someday…  In the meantime, anyone interested in a low mileage fighter?

Full 3D Printed Airplane – Chapter 1 (Printing)

I’ve had a 3D printer now for a couple years and printing some add on accessories for my RC aircraft was the main reason I purchased it.  Cockpit details, air scoops, replacement plastic parts for broken scale details like antennas and the like have all been projects I have tackled successfully using my 3D printer.

My particular printer is an Ender 3 with the only functional modifications being a v4.2.7 motherboard, a glass build plate and some updated build plate springs.  The base unit can be bought several places and I recommend it as a beginner hobbyist platform.  From what I have seen, it is widely accepted as a great device in this role.  Here is my link to purchasing the current version of this printer from the Creality Store via Amazon.

At the time I purchased it, I was not particularly interested in or really aware there were very many options for printing a full RC airplane.  What I had seen were overweight, ugly airplanes that seemed to just barely fly.  After a time I heard about a new material that made it more feasible to print something that might actually approach a reasonable level of functionality… something called Light Weight PLA.  Here is a link to what I purchased.  There are other brands out there but eSun seems to be a well accepted as a quality product and I don’t have enough experience to accept the challenge of sorting out more factors than I needed to when I was embarking on a new adventure so I went with what seems to be a premium material.  Here’s a link to that:


So of course I purchased a roll of filament and quickly decided it was going to be to complicated to set up my printer to work with it.  Also my printer had such a small print surface that I surely couldn’t print anything of any size… so the filament went up on shelf to gather dust.  The reality was somewhat different, but I wasn’t wrong that with my level of knowledge at the time, I probably wouldn’t have had good results.  

Fast forward a year (or maybe 2??) and I happened on a YouTube video showing a really nice looking airplane that was 3D printed!  This got me thinking, maybe it was time to revisit the idea.  I had learned a bit more about 3D printing and felt I was ready to take the plunge.

So for a week or so, most of my recreational video watching was of 3D printed airplanes and fair amount of web research turned up some interesting information.  There were quite a few sites that espoused particular parameters and setups to get successful prints for LW-PLA and there were a number of free designs around.  What finally made me open the box was when I came across a free download from Eclipson

The 3D printed aircraft designs on their site are exceptionally nice looking… rivalying the available ARFs on the market from even the top tier companies using more traditional techniques.  They do charge for these files, but the prices seem very reasonable for the level of quality they appear to represent.  Their website is very well built and presents their product very nicely with lots of pictures and available information. 

Time out for a rant… feel free to skip to the next paragraph.  The only thing I wish for, and I may be completely alone here, is a nice manual to help me build.  They do a one page sheet that has a lot of information packed into it that is very helpful, and there is a good build video but for me personally, I hate build videos.  Especially videos with no narration or discussion like this one.  This one is as good as any I’ve seen, but I would much prefer a well illustrated and written step by step assembly book.  I’d even pay for one in addition to what is available if it was well done.  I find it hard to keep stopping  and starting a video… finding a way to backup and find that one part I’m looking for… stopping at just the right point to see what I want to see… Its all just a PITA for me.  I know some folks would rather have the video… I’m NOT one of those.  OK, rant ended.

Best of all, by all reports, the Eclipson aircraft fly very well.  What really got me out of the starting blocks was that they even provided ready made Gcode for their models, preset to work on my exact printer!  Its like just feeding in the files and hit print and out pops an airplane!  Ok, well maybe not quite that easy but it does get you around having to learn all the parameters necessary to print good quality aircraft parts using this material.  Certainly tweeking their settings a bit could make the parts even a bit better, but what I found was using their exact settings produced parts good enough to actually function.  Or at least it appears so to me.  I don’t mind learning about all the parameters and figuring out how to dial in my printer to produce my own good LW-PLA parts, but I like it even better if I can do that while another perfecty usable part is being produced!  Icing on the cake, they have one airplane you can get the files for simply by signing up!  This airplane is the Wolf.  This RC design is based on a german glider design first produced in 1935 and motorized for RC use.  So I signed up and downloaded the files.

I began printing parts from the supplied Gcode and occaisionally I’d tinker with my profile and try printing my own part just so I’d have that ability in the future and because in one or two cases I realized I could print the part just a bit better if I tuned the settings for my particular printer and material.  For instance, my eSun White PLA (that I used to print a few parts that needed more strength… per the instructions) happens to print better at 5 or 10c higher temp than the supplied Gcode is setup for.  So I pulled up the STL file provided and used my profiles I generally use for PLA+ and printed out those few parts with my own Gcode.  I suprised myself with how well those parts printed out.

Here’s some obligatory “parts being printed” photos..  All of these are using the eSun LW-PLA+.

First section of the port side aileron getting underway…

Here’s another section of the aileron

And this is obviously the vertical fin.  An exceptionally nice print if I do say so myself.

Up to this point, I had only printed some of the smaller parts of the airplane.  But if I want to have an airplane I have to tackle the big parts next and in my experience, big parts take a lot of time to 3D print.

I’m not typically impatient when building an airplane.  I don’t mind if a project is sitting on my bench for a while waiting for some necessary parts to ship in or whatever.  I can always find another project or a different aspect of this project to keep me busy.  I will admit however that I was a bit troubled by the thought of how long it was going to take to print all these parts.  I have done some moderatly large parts on my printer before that took 14 hours or more!  Looking at the airplane I was afraid weeks of printing overnight would be involved.  Luckily, once I tried it, nothing could be further from the truth.  I quickly realized that because of the way you print these, there is very little or no supports needed/desired and not much infill either.  This results in parts printing much faster that I expected.  I printed the first dozen or so small parts over a weekend and I think I got all of the LW-PLA pieces (by far the largest part of the airplane) done during a single week of just part time printing while working on other things.  Honestly think I could print all the parts in 3 days now if I really tried.

The final piece or two I needed to print, was the tire and hinges.  These pieces need to be printed  from something a bit more flexible and in the 3D hobbyist world that means TPU.  TPU is about the closest thing to rubber that we can print on a 3D printer and it demands yet another totally different set of printer settings.  After reading a bit on the proper settings, different brands and types of TPU available, etc… I decided to give it a try.  I had gained a little confidence through the process of printing the LW-PLA so I made the leap.  Another order to Amazon and the very next day I had a fresh role of eSun TPU95A in gloss black.

With my very first try, aided by the suggested settings from eSun and a small tweak or two based on articles and videos on line, I had my very first TPU print… a test piece based on a video from a youtuber named CHEP.  It looked great and did point out one small wall adhesion issue so I tweaked one more setting and tried printing my tire.  It worked well enough on the very first try.

As I went through and “post processed” the prints, removing some skirt material and sanding a couple of spots, etc… I did manage to damage a part or two and had to reprint a couple as a result.  The parts aren’t perfect and I have some ideas about what I might try to do differently if I do another airplane down the road, but I think it might actually fly some day! 

After assembling the needed RC gear and a few other necessary supplies (more on that in a follow on article) I had this pile of parts sitting on my bench… time for assembly!

3D printing add-ons for the Freewing JAS-39 Gripen

I recently acquired a Freewing JAS-39 Gripen (Griffin for us English speakers).  I’ve never had much interest in EDFs but why I have it and what possessed me to buy it is a topic for another post.  For my purposes here, it is enough to say I have one and I wanted to make it look a bit more formidable by adding some weaponry, help out with balance with a little added weight to the aft of the balance point and just add some scale touches at least for display purposes.

Luckily, there are some readily available STL files.  STL files are the output of a CAD program and are what you need to input to the slicer software which produces the G-code files.  The slicer software parses through the STL file to decide what instructions to send to the 3D printer to create the shape and creates a list of those commands which is your G-code file.  So, having the STL files means the hardest part of 3D printing what I want (the actual CAD design work) is done for me!

I printed a couple of Iris-T missiles first using some white eSun brand PLA+ filament.  The Iris-T is the European equivalent to the US Sidewinder missiles.  Both are extremely smart, relatively short range heat seeking air to air missiles.  The Gripen can carry either but I decided to start with the more “native” weaponry.   These are almost always carried on the wingtip hard points on the Gripen and since the wing tip hard points are already in place on the model, it made sense to start with something for those stations.  They came out pretty well with only a little bit of stringing and just one or two very slight imperfections.  I was pretty happy.   There are keyhole slots in the end of the rails on the wingtips of the Gripen and there are mounting rail STLs available so I printed a few of those as well.  The missiles have a flat spot designed in where you can easily glue these to the missile.  Once that was done, with only a little sanding/carving/cleanup I was able to slide the missiles onto the wingtips.  Here is a pic of the IRIS-T on the wingtip of the plane pretty much fresh off the printer with just some minor gluing and sanding.  These are 1/9th scale just like the airplane.

There are a couple of nice things about having these on the plane.  First, they add some needed tail weight.  The Gripen has a very swept back Delta wing so the wingtips are far back from the desired CG so while not the ideal place for extra weight, its not a terrible spot either. Second, they cover up the sort of ugly wingtip “rails” with some nice eye candy.  And third, I’m thinking there may be some wingtip strikes with the landing gear being fairly narrow as they are on many jets, so they can act as wing tip protection to some extent.  I can print another missile or fin or whatever, but the wingtips of the airplane would be much harder to reproduce and replace if they get beat up or broken.

Next I tackled some Meteor missiles.  These are long range, radar guided air to air missiles.  In real life these things are around 13 feet long, so scale they are around 16″ long.  These are massive and carry a big warhead.  Imagine a telephone pole coming at you with a big bomb on the front… at multi-mach speeds!  Used properly they are on par with the best such weaponry out there.  With the right launch parameters and guidance these can be fired from 100+ miles away!

These are generally carried on under wing pylons on the Gripen but the model doesn’t have any built in hard points for those so I had to print out the keyholes/hardpoints and the pylons themselves and get those mounted on the plane.  It took some carving in the wing, careful alignment and slowly digging a bit deeper until I had what I wanted then glued the hardpoints in.  With those in place I could slide the pylons on and lock them in place then slide the missiles in place under the pylons and lock them in and bingo, we are in business.  Below are some snapshots of that process and the results.

 

 

 

 

 

 

 

This is the outline of the mounting socket as I’m starting to remove just the skin/paint in preparation to route out maybe an 1/8 inch or so of foam so I can glue it in..

This is the socket in place.

 

 

 

 

 

 

 

 

 

 

 

 

The tape attached to the pylon is adding some pressure after the glue is in place and just starting to setup nicely.  It looked a little off so needed some pressure to get it to sit level in the wing.

Here’s the whole thing after I hung a meteor on it… starting to look pretty good! 

After I got this far I was down to needing sanding and painting so I started doing a bit of research and found a variety of paint schemes available and went to work.  The meteors especially varied a lot, so I took a bit more license with those and stayed with the white scheme but the IRIS-T is almost uniformly and almost completely gray so I decided to reprint those so I wouldn’t have to do so much painting (I hate to paint!).  Then I took advantage of where some of the color bands are to cover up some of the glue joints with pin stripe or color bands on both missiles.

Meteors (on left) and Iris-Ts (on right)

I’m sure for the true scale guys these are nothing special but I think they add a lot to the look of the airplane and the effort was not huge.  For me, having the 3D printer (and the efforts of the guys who first did the design) made it possible to really upgrade the look of the airplane with minimal effort.  And no one has anything that looks like these!

Of course, it doesn’t end here.  I have engine inlet and outlet covers printed as well and I’m eyeing some fuel tank designs I’ve seen…

So if you are wondering if you need a 3D printer to add a little extra something to your hobby… the answer is of course, NO.  But I recommend it.  There’s a lot you an do that will add that little something extra to your favorite bird.  I expect to do a bunch more of this in the future.

Couple of new “to me” motor vendors… specs

Electric motor specs available

I recently was involved in a conversation that started out bemoaning the fact that Horizon hobby often doesn’t supply much in the way of specifications on many of their electric motors, when someone referenced a couple of sites that provided a plethora of information about that particular electric motor vendor products.

I have used ecalc to help me predict power system performance for years but that doesn’t get you around a lack of decent information and for those who for whatever reason don’t have access to that tool or have trouble understanding how to use it correctly, information from the vendor like those below has a very high value.

I haven’t tried out these motors for myself but I applaud the disclosure of specifications along with predicted (maybe tested) test results with a variety of propellers.  This really allows you to pick a setup that does what you want to do without a lot of trial and error as well as allowing us to get the most out of the motor, again without a lot of trial and error.

So here are the links to these manufacturers sites.  With this sort of available information I may have to give them a try.

Leopard Motor Data Chart

Badass Motor Data Chart

 

 

Aces High P47 Retract issues and repair

I’ve really just gotten started flying my Aces High P-47, with maybe 6 or 8 flights as I figure out the ideal balance, throws and flight envelope for this airplane.  However all of that got a bit sidetracked a few days ago when my port side retract refused to retract after a landing.  I had to cycle it 3 times to get it to extend during that last flight and after the landing it was just totally unresponsive.

So back on the bench, I started trying to troubleshoot the issue.  First off, you have to understand how everything goes together.  The retracts in the P-47 are simple units that require a separate controller unit that looks like this:

The retracts each only have 2 wires, a positive and a negative.   Each retract unit plugs into one of the back wheel  connections on the controller.  The controller has one servo lead for power and signal input to the controller.  This plugs directly into your receiver on whichever channel you chose to control the retractable landing gear. 

In my case, in order to simplify wiring to each wing, I have a wiring harness that allows for a single multipin connector to go to each wing rather than separate servo wires.  Since the harness consists of multiple wires and crimped on pins, etc… I first decided to eliminate the wiring harness in order to eliminate any possibility that a bad wire or crimp connection in the harness was the culprit.  That accomplished and no change in operation I tried swapping the port and starboard connections.  The failure still appeared to be in the port side unit.

At this point I got in contact with Extreme Flight to see what my options were.   I provided my troubleshooting results and awaited a response.  Although the response took several days I did eventually get an email back from a support person who questioned if I was certain the retract unit was failing and not the controller.  At this point I arranged a call with the support person and walked them through the steps I had taken and they agreed that I needed a new retract… which is unfortunately on back order… with no predicted ship date!!

They did agree that the retract set should be replaced under warranty and sent me confirmation of the order… but of course I was not hanging this plane up for the season without a fight!

So moving into some real testing I removed the offending retract from the port wing and the controller from the body and fished out a spare A123 flight pack and my trusty servo tester.   (Note: when I pulled the retract I was sure to use the retract wire to pull a string from the wing root out to the retract area so that replacement would be simple. ) 

First using the starboard wing to check my test bed, I confirmed I could cycle the working retract without an issue.  During this test I noticed that the controller has LEDs that cycle from green to red depending on which way the controller is trying to drive the gear.  The LED goes off once the retract hits its limits and (I presume) the controller senses an end point has been reached.  I’m guessing it senses the spike in current as the motor stalls and automatically shuts down.

I also measured the voltage being supplied by the controller and verified that the controller simply flips the polarity to the motor in order to reverse the direction when the servo signal goes from one end to the other.  Following up on that I started trying to establish whether the continuity of the wire was good all the way to the retract motor.  I stuck a couple of very fine pins into the wire up near the motor and tested for continuity from the connecot to that point.  This established both wires were good to that point so it was down to either the motor being bad/burned up/open or just a bad connection to the motor.  I measured the resistance of the complete working retract in the other wing and established a baseline of about 4.5 ohms was a normal working unit.  Testing the bad unit showed infinite resistance/an open circuit.  After I did this, I quickly realized the red wire had indeed broken loose inside the “can” that surrounds the motor and I was able to easily pull the wire out of the entry point to the can/motor housing.  The problem now was that the motor sits inside this can and has no screws, set screws or other obvious way to get it open!

Deciding that I had nothing to lose I started disassembling the retract mechanism.  

Once the screws on one side were removed it was simple to separate the motor assembly/screw/trunnion pin from the remainder of the servo.  Note that there are  ball bearings in the sides of the assembly so while mine easily stayed in place, I’d be gentle and try not to dislodge those if you ever have reason to dig this deep!

Once the motor can was loose in my hand I realized that if it were going to be possible to get inside the can and get to the solder connection point on the motor it had to be some sort of split/friction fit or two parts had to twist apart somehow.  I first took a razor knife and tried to split it along either of two lines around around the enclosure… neither yielded to my efforts.  Finally I grabbed the center of the can with a pair of pliers and tried twisting either end.  Finally the end nearest the trunnion pin rotated a bit and I was able to unscrew that part and slide the motor out from inside the rest of the assembly.

At this point it was possible (if difficult to manipulate due to just the small size of the solder tabs on the motor and gauge of wire) to re-solder the wire and test the operation.  Hooking the controller back up to my servo tester and operating the retract motor was again attempted and all went well.  Keep in mind the motor will just run continuously as there is nothing stopping the motor so no current surge to tell it to stop.  This is normal/expected operation in this state.  Also note that there is a spacer in the end of the can where the shaft extends out to the trunnion and the shaft of the motor is keyed into the threaded shaft so be careful when reassembling not to lose of those parts and to align the motor carefully so its keyed shaft fits correctly to the threaded rod end as you put things back together.  I was concerned that the wires might touch the can and short out the controller output as there is no obvious protection from this happening but it didn’t so I’m assuming the inside of the can on that end has some sort of clear insulator or other mechanism to prevent it even though I never figured out exactly what it is.

Once I completely re-assembled I took some steps to protect against another failure due to motion of that wire or strain on the wires.  First I coated the entry point with liquid electrical tape and let it set up.  

As you can see by the scars on the can, I marred it up just a bit with my pliers during the process but now that you know that the end cap nearest the pivot point is the one that unscrews, you could probably avoid this with some care and perhaps a wrap of tape around the can in strategic locations when disassembling.

Once that was accomplished (on both retracts) I mounted the retract back in the wing, used the pull string to get the wire properly routed.  At this point I pressed the wire up against the balsa sidewalls of the wheel well and applied a bit of glue to make sure no further physical strain could be applied to the wire at the entry point to the can.  As shipped that is just an entry hole with no grommet or strain relief of any type so I’m being doubly certain to protect it moving forward.

How will it hold up?  Is this the end of the retract issues on this bird??  Well we shall see, assuming I manage not to do anything stupid during my flights.  Let’s hope for the best.

I’m only now realizing that I have no idea what keeps the motor from spinning around in the can… I didn’t see an alignment pin or flat inside the back of the can etc… but it would seem there must be something there besides the wires that can’t rotate… I’m guessing there is something in the front area that accomplishes this.  Well that’s an investigation for another day and probably only if/when I get the new set or have to work on these again so lets hope that remain a mystery!

If you have this airplane or the Aces High FW-190 from Extreme Flight that looks to use similar retracts, I’d definitely address some sort of strain relief on your retracts to avoid similar issues.  Blue Skies.

 

Seagull Models T-6A Texan II

Early in 2020 I was wandering through a huge swap meet over in Dayton, Ohio and I chanced across two new-in-box 60″ish” size Seagull Models T-6A Texan IIs…  One was made up in a beautiful Red/White/Blue/Black and Silver scheme and the other in more of a gray camouflage pattern. 

Model Airplane News - RC Airplane News | Top 10 Warbirds of the Year — RC Heavy Metal Reviews

I admired the models and quickly decided they were not for me.  I kept telling myself that a T-6A is a jet trainer and surely would be fast and heavy and besides, what did I have for a power system?  They are a bit more unique though and the red/white/blue scheme sure looks nice… I almost didn’t make it past the table when the owner made an offer to let me have one for what couldn’t be more than 1/2 of the cost of a new model!!  I stuck my fingers in my ears and ran to the next set of tables… 

Fast forward a couple hours later and I’m about to finish my first lap around the meet when I noticed what looked like a NIB Hacker motor.  The gentleman explained he had bought it as a spare that he had never needed.  I had some recent experience with another Hacker that was part of one of the best E power setups I had ever operated so this looked tempting.  Again the price was right and this time I didn’t try too hard to resist.

Now armed with a high powered 6S power system (1250W continuous and able to easily handle 1600W) I realized I had the exact motor for the Texan II.  After a brisk walk and a quick negotiation I had the airplane as well.  Wait, what had I done!?  It is still a jet trainer.  I like lightweight, overpowered, nimble and aerobatic aircraft with simple fixed gear!!  Why did I buy this beautiful, sleek, heavy trainer with mechanical retracts??

Over the next couple weeks I worked my way through assembly of the T-6A.  Since my expectation was that this airplane would likely end up being something I’d only fly once in a while and probably end up selling to those who have more appreciation for “war birds” I decided to make sure I added most or all of the scale details (something I might normally skimp on) and try not to spend an inordinate amount of money assembling all the pieces and parts I would need.

With that in mind I installed the pitot tubes on the wings, the anti-static rods on the elevator  and even took the time to make a color change on one of pilot busts so that they wouldn’t look quite so much like twins!  I also took some extra time to apply the decals and even did some “base layer” covering work under the star and bar logos to help cover up the color change underneath and not allow it to show through.  I also opted to install the mechanical retracts where I would normally have spent the $300+ to purchase electrics.  The mechanicals are going to cost me more like $50 to install, mostly the cost of a retract servo.

The first pleasant surprise was how well the retracts worked with nice direct routing of the linkages.  Ok, so I’m not a big fan of the plastic inserts for the wheel wells, but with some care they at least are a decent color and fit.  Again, I’m not a big fan of a once piece wing but the upside is the  simple retract linkage geometry and the need for only 1 servo to service both mains.

Once I got it all assembled I was back to the overall look.  I love the lines of the Texan II, the PC-9, and similar aircraft and this one has a great color scheme… but I wasn’t getting my hopes up on flying characteristics so with little fanfare I took it out to the field and with only a couple of friends present I flew it for the first time.  All I can say is wow!  This thing is certainly a warbird.  It’s not light and flies much better with a little more throttle… she’s no floater… but it feels like it is on rails in the air and has enough wing to handle the weight so just by keeping a modicum of speed on the bird, she flies great!

Since that day I have probably put 30 more flights on the airplane and I’ve had zero issues with it.  It flies really well and with all the scale touches it looks great in the air.  I don’t recall flying it without someone commenting on how nice it looks.  I’ve switched out to a very slightly less efficient 4 blade propeller for even more appropriate scale looks on the ground and I’ve had a few of the scale details get broken during transport and assembly but otherwise it has so far been a great airplane.

I created some protective covers out of foam, cardboard and tape to protect several of the protrusions… antennas, static rods, etc… and had to create some replacements once in a while the flight characteristics have been very pleasing and I do enjoy flying it… and lets admit it… the comments and attention it gets!  I have a Styrofoam holder (cut with a foam cutter from a shipping container for frozen food) for the body and a wing bag for the one piece wing that helps keep it all safe during transport and those have cut down on the issues.

So in summary, I’d recommend the plane to anyone interested in a nice psuedo scale attractive airplane that wants to get into warbird type aircraft.  Its a nice step from sport planes into that realm and you will enjoy flying it as long as you remember what it is and fly it accordingly.  3D is not ever going to be its strong point, but sleek lines and scale aerobatics are done with ease and look really nice in this bird.  It has earned a place in the hangar at least for now.

 

3D Printing… Handy tool for RC airplane work? Or maybe just another hobby to eat up hours!!

After a sad end for my Top Flite P47 due to radio failure, I have been in the market for a replacement and started reading about the Hangar 9 20cc P-47 ARF.  While doing some research I chanced across some posts talking about printing a new cockpit for the bird on a 3D printer… and the wheels started spinning.

Of course I know that 3D printers are too expensive, take a special brand of wizardry to operate, etc… so I inquired with a friend of mine who has perhaps 5 of these magical machines.  So when I asked if he would be willing or how much it might cost to print out these cockpit he response was link to a large online retailer for a 3D printer!!  Hmmm… seems like a hint.  Here is a link in case you want to follow me down this particular rabbit hole.

 

The first thing I noticed is that this particular printer (at the time I purchased it) was under $200…. far below what I had expected.  After another week of research and self justification… I placed the order.

I’ll save all the trials and tribulations of assembling the printer, testing, adjustment, more testing, etc…  I decided not to have a go at printing the cockpit interior immediately.  Soon enough I started finding other uses for the new printer within my RC hobby.  Here are a couple of examples…

First, I struggled with getting an electric nose retract to work for the tail retract of the H9 P-47.  The geometry just didn’t work with the provided linkage so I began creating a replacement, and after a few iterations I came up with a design that worked for me.  Being able to change dimensions and reprint or print 3 or 4 slightly different designs and test each really made it possible for me to get this working!

Here’s one of the early iterations..

And here it is installed on the aircraft for testing.

Also for the P47, there was a pattern available to help guide the wing wiring into the fuselage for easier assembly so I printed those up and installed them immediately.

Here’s the guide tube fresh off the printer…

And here it is installed in the body of the airplane.

Next, I managed to drag a wingtip on landing on my Texan II and broke one of the scale protrusions off of the underside of the wing.  I shortened my redesigned unit a bit and made some minor concessions to ease of fabrication and printed a pair of replacements.

Here you can see the broken part and a replacement part being test fitted on the wing.

And here is the new unit in place after using some marker pen to add a bit of color.

Next I found the tail wheel mounting bracket of my Tundra to be somewhat weak… a known issue at the time.  I found someone had already designed an alternative, so I printed up a replacement.  Actually a couple!

Here are a couple alternatives I found… The top is a bit more solid and the lower a bit lighter but how well will it hold up??

Certainly many of these things take a fair amount of time to design, prototype and print.  But in many cases there are no replacement parts available or there are many options but no way to know which might actually work so 3D printing provides a way to work through the options without ordering and praying you find the right part, eventually.

So the real answer here is, Yes!  3D printing is a hobby all its own and can eat up a lot of time and effort.  It can also be an immeasurably useful tool for the RC modeler.  If you continue to follow my posts here, you will very likely hear more about it.

New Hangar 9 P-47 67″ ARF… One flight and gone.

My first attempt at a replacement for my late lamented Top Flite is the H9 20cc size P47D 

P-47D Thunderbolt 20cc ARF, 67"

I transplanted all of my radio gear, servos etc… from the Top Flite and contemplated a number of updates/changes etc… 

Should I try to 3D print a better cockpit?  The provided instrument panel in particular looks like it could only be accurate if the instruments were updated to 2020 standards!  I decided to go ahead with the supplied until I decided how much I liked this particular model. 

I also contemplated and decided to put my retracts in the wing and even ordered a retractable tail gear.  When that didn’t fit I tried another and spent a fair amount of time fabricating linkage to make it work correctly.  Don’t believe the Horizon web site…  The nose retract they recommend simply can’t work as the tailwheel retract for this airplane!

I did find some plans for and 3D printed some wire guides to make wiring the bird easier and then crimped up some multi-connectors to make it hassle and error free.

After all that the bird was beautiful but heavy… compared to my Top Flite this bird was 3 lbs heavier and when I flew it I immediately found that it just didn’t track like the Top Flite and the thrust to weight ratio is anemic as well.  The extra 3 or 4 inches of wingspan just can’t compensate for the increased weight.  Now maybe my repaired power system is not operating as it was…. I don’t believe so but it is possible.  Or maybe the power system is just to small for this slightly larger WS and appreciably heavier craft.  Again, perhaps but there is no way the recommended Power 60 would be better.  I love the power 60.  It’s an underrated and amazing motor, but it isn’t going to outperform the Hacker A60. 

I flew one flight on the airplane and was so disappointed I took the airplane home and stripped my radio gear, retracts, etc… aside from the servos and wire guides… out so I could put it up for sale immediately.  Eventually a friend of mine purchased the plane and he and I are installing a DLE-20 he has.  Maybe with that power plant it will find a new lease on life.

For me, I have my eye on an airplane that is similar in size and weight to the Top Flite…  Hopefully my third P47 will be a charm!  For me, the H9 is to heavy for its size to fly the way I like.  I suspect that many warbird guys would love this plane, but anything I fly needs to fly well first.  Looks, scale detail, etc… all have to take a backseat and this was not my impression of the H9.

Hacker A60 Repair

After the great NX10 failure of July 2021 I found myself with a Hacker A60-5S V2 motor with a bent shaft…  I had heard that parts were available for these motors so I searched and sure enough I found the replacement shaft readily available and at a pretty reasonable price… especially considering how well the motor had run and the higher initial cost of the motor.  I had expected worse so I went ahead and ordered the replacement shaft.

I had included a request for information on the replacement procedure when I ordered the shaft so when it appeared on my doorstep in just a couple days I was pleased until I realized that there were no directions included.  None on the website either and after searching the web thoroughly it didn’t appear there were any videos or descriptions either.  Not even a good exploded view of the motor was to be found!

This left me in a bit of a quandary.  After staring intently for a couple days at the motor and replacement shaft while they sat patiently on  a corner of my desk I eventually unscrewed the bolt that seemed to be some sort of bearing retainer at the back end of the shaft.  There was a thick non-ferrous washer underneath that came off with it but it didn’t just fall apart at this point so I examined it some more.  Seeing that here was a threaded hole and a matching allen bolt/set screw in the replacement shaft package I soon surmised that this set screw was hiding just behind the front plate of the motor and could be reached with an allen wrench via one of the vent holes on the sides of the motor.  With the help of some very bright lighting to make sure I guided the allen wrench to the screw correctly and that making sure I had a nice fit, I managed to unscrew that as well and fish it out of the motor.

At this point I could see no reason the shaft shouldn’t slide out but tugging and pulling (and cursing) didn’t seem to make it happen so I set it down for another bout of staring and perusing of the internet.  There were several videos of shaft replacements for electric motors but none of this model and many talked about pushing the shaft the wrong way causing damage to the coils in the motors… yikes!

A couple days more passed and I decided it was time to just take the plunge.  using a 1/4″ drive socket that happened to taper down to the perfect size to press this shaft out I placed the motor face down on my drill press table with the shaft through the hole… I was going to try to press it out forward as I had seen one other Hacker done in a video (a totally different looking motor but hey I only had two choices).  I had heard a drill press is a pretty good arbor press substitute so I started putting some pressure on the shaft which seemed pretty determined to stay right where it was.  Wondering if I might be purchasing a new motor soon I put a bit more pressure on it and… it moved!

I had to find another rod to push the shaft through a bit more before it started to move a bit more freely and I could press it the rest of the way out by hand.  Finally I had something that looked like this.

After a fair amount of cleaning with high pressure air and a little careful brushing with a toothbrush I grabbed the new shaft and discovered it’s a little shorter than the old one.

The important dimension however from the back of the shaft to the set screw was the same so not a big issue.   There was really only one more big “trick” I had to find out the hard way and that was a little issue of aligning the threaded hole up with the hole in the front plate so the set screw would go back in place easily.  Since it’s down in a dark hole when reassembled it took a bit of finagling but I eventually managed to get it all aligned properly and the motor looks like new and seems to run smoothly once again.

I’m working on the replacement for the Top Flite P47 now… of course a new Jug is in the works and now I have the perfect motor for the job!